SPLITTING TECHNIQUES

Major questions related to the use of splitting techniques

1. Is it worthwhile to use splitting techniques?
2. Are there drawbacks when splitting techniques are used?

Major drawback: splitting errors

1. Could we avoid the splitting errors?
2. Could we evaluate the splitting errors?

Some kind of splitting is used in all large-scale environmental models I know

Air Pollution Models

$$
\begin{array}{rlr}
\frac{\partial c_{s}}{\partial t} & =-\frac{\partial\left(u c_{s}\right)}{\partial x}-\frac{\partial\left(v c_{s}\right)}{\partial y} & \text { hor. tr } \\
& +\frac{\partial}{\partial x}\left(K_{x} \frac{\partial c_{s}}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{y} \frac{\partial c_{s}}{\partial y}\right) & \text { hor. di } \\
& -\left(k_{1 s}+k_{2 s}\right) c_{s} & \text { deposi } \\
& +E_{s}+Q_{s}\left(c_{1}, c_{2}, \ldots, c_{q}\right) & \text { chemis } \\
& -\frac{\partial\left(w c_{s}\right)}{\partial z}+\frac{\partial}{\partial z}\left(K_{z} \frac{\partial c_{s}}{\partial z}\right) & \text { vert. } \\
s & =1,2, \ldots, q & \\
\frac{d g}{d t} & =A_{1}(t) g+A_{2} g+A_{3}(t) g+A_{4}(t, g)+A_{5}(t) g
\end{array}
$$

Air Pollution Models-continuation

$$
\begin{aligned}
& \frac{d g}{d t}=A_{1}(t) g+A_{2} g+A_{3}(t) g+A_{4}(t, g)+A_{5}(t) g \\
& f(t, y)=A_{1}(t) g+A_{2} g+A_{3}(t) g+A_{4}(t, g)+A_{5}(t) g \\
& g=y \\
& \frac{d y}{d t}=f(t, y) \quad \text { stiff system of ODEs } \\
& y \in \Re^{N}, N=\left(N_{x} \times N_{y} \times N_{z}\right) \times N_{\text {species }} ; \quad N>80 \text { mill. }
\end{aligned}
$$

Implications from the stiffness of the system of ODEs:

1. Implicit time-integration methods are to be used.
2. Huge systems of linear algebraic equations are to be treated (at many time-steps and at many iterations)

Air Pollution Models-continuation

Use of (Quasi) Newton Iterative process $\frac{d y}{d t}=f(t, y)$
$y_{n+1}=y_{n}+\Delta t f_{n+1}, \quad y_{n} \approx y\left(t_{n}\right), f_{n}=f\left(t_{n}, y_{n}\right)$
$F\left(y_{n+1}\right)=0, \quad F\left(y_{n+1}\right)=y_{n+1}-y_{n}-\Delta t f_{n+1}$
$J_{n+1}=\frac{\partial f(t, y)}{\partial y}, \quad$ for $\quad t=t_{n+1}, \quad y=y_{n+1}$
$\frac{\partial F\left(y_{n+1}\right)}{\partial y_{n+1}}=I-\Delta t J_{n+1}$

Air Pollution Models-continuation

$$
\begin{aligned}
& \left(I-\Delta t J_{n+1}^{[i-1]}\right) \Delta y_{n+1}^{[i]}=-y_{n+1}^{[i-1]}+y_{n}+\Delta t f\left(t_{n+1}, y_{n+1}^{[i-1]}\right) \\
& y_{n+1}^{[i]}=y_{n+1}^{[i-1]}+\Delta y_{n+1}^{[i]} \\
& y_{n+1}^{[0]}=y_{n} \quad \text { or } \quad y_{n+1}^{[0]}=y_{n}+\frac{\Delta t_{n+1}}{\Delta t_{n}}\left(y_{n}-y_{n-1}\right)
\end{aligned}
$$

At each iteration the following operations must be carried out:

1. Function evaluation
2. Jacobian evaluation
3. Form a system of linear algebraic equations
4. Solve the system of linear algebraic equations
5. Update the solution

Air Pollution Models-continuation

$\left(I-\Delta t J_{n+1}^{[i-1]}\right) \Delta y_{n+1}^{[i]}=-y_{n+1}^{[i-1]}+y_{n}+\Delta t f\left(t_{n+1}, y_{n+1}^{[i-1]}\right)$
$\frac{d y}{d t}=A_{1}(t) y+A_{2} y+A_{3}(t) y+A_{4}(t, y)+A_{5}(t) y$

$$
\begin{array}{lll}
\frac{d y^{1}}{d t}=A_{1}(t) y^{1} & \frac{d y^{3}}{d t}=A_{3}(t) y^{3} & \frac{d y^{5}}{d t}=A_{5}(t) y^{5} \\
\frac{d y^{2}}{d t}=A_{2} y^{2} & \frac{d y^{4}}{d t}=A_{4}\left(t, y^{4}\right) &
\end{array}
$$

Advantages of the splitting procedures

■ Easy to exploit the special properties of the involved operators
\square Many small problems are to be solved instead of one very big problem

- Parallel computations can be introduced in a natural way

Need for splitting

- Bagrinowskii and Godunov 1957
- Strang 1968
- Marchuk 1968, 1982
- McRay, Goodin and Seinfeld 1982
- Lancer and Verwer 1999
- Dimov, Farago and Zlatev 1999
- Zlatev 1995

Criteria for choosing the splitting procedure

\square Accuracy
\square Efficiency
\square Preservation of the properties of the involved operators

No splitting errors

$$
\begin{aligned}
& A_{1}(c)=-\nabla(u c), \quad A_{2}(c)=\nabla(K \nabla c), \quad A_{3}(c)=\kappa c, \\
& A_{4}(c)=E, \quad A_{5}(c)=Q(c)
\end{aligned}
$$

If $\quad \nabla u=0, \quad \nabla K=0, \quad \nabla \kappa=0, \quad \nabla E=0$
then any pair of the first four operators Lcommutes except the third and the fourth. If the fifth operator is independent of the spatial variables, then it L-commutes with the first three operators

The conditions of this theorem are unfortunately never satisfied in practice

Order of the splitting error

- Sequential splitting: it can be proved that the order is one
- Symmetric splitting: second order can be achieved Marchuk (1968)
Strang (1968)
If the accuracy is the important issue, then symmetric splitting is to be chosen
If the cost of computations is the crucial factor, then sequential splitting might be chosen

Numerical example

Test 6 - The numerical methods are not

 causing errors (excepting rounding errors)$$
\begin{aligned}
& \frac{\partial c}{\partial t}=y \frac{\partial c}{\partial x}-x \frac{\partial c}{\partial y}+(1+x-y) \frac{\partial c}{\partial z} \\
& c(x, y, z, 0)=x+y+z \\
& x \in[0,1], \quad y \in[0,1], \quad z \in[0,1], \quad t \in[0,1]
\end{aligned}
$$

$$
c(x, y, z, t)=x+y+z+t
$$

$$
\frac{\partial c^{1}}{\partial t}=y \frac{\partial c^{1}}{\partial x}-x \frac{\partial c^{1}}{\partial y}
$$

$$
\frac{\partial c^{2}}{\partial t}=(1+x-y) \frac{\partial c^{2}}{\partial z}
$$

Numerical example - results

Time-steps	Error	Decreasing factor
125	$1.90 \mathrm{E}-3$	-
250	$9.50 \mathrm{E}-4$	2.00
500	$4.75 \mathrm{E}-4$	2.00
1000	$2.37 \mathrm{E}-4$	2.00
2000	$1.19 \mathrm{E}-4$	1.99
4000	$5.94 \mathrm{E}-5$	2.00
8000	$2.97 \mathrm{E}-5$	2.00
16000	$1.48 \mathrm{E}-5$	2.01
32000	$7.42 \mathrm{E}-6$	1.99

Rotation test + chemistry

Hov et al. (1988)

$$
\begin{aligned}
& \frac{\partial c_{s}}{\partial t}=(1-y) \frac{\partial c_{s}}{\partial x}+(x-1) \frac{\partial c_{s}}{\partial y}+Q_{s}\left(c_{1}, c_{2}, \ldots, c_{q}\right) \\
& x \in[0,2], \quad y \in[0,2], \quad t \in[0,2 \pi] \\
& x_{0}=0.5, \quad y_{0}=1.0, \quad r=0.25, \quad r^{*}=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \\
& c_{s}(x, y, 0)=c_{s 0}+99 c_{s 0}\left(1-\frac{r^{*}}{r}\right) \text { for } \quad r^{*}<r \\
& c_{s}(x, y, 0)=c_{s 0} \quad \text { for } \quad r^{*} \geq r
\end{aligned}
$$

